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APPLICATION OF THE LAPLACEIBOREL 
TRANSFORMATION TO THE REPRESENTATION OF 

ANALYTICAL SOLUTIONS OF DUFFING’S 
EQUATION 

K. V. Truong,* A. Unal, and M. Tobak 
Ames Research Center 

SUMMARY 

Various features of the solutions of Duffing’s equation are described using a representation of the 
solutions in the Laplace-Bore1 transform domain. An application of this technique is illustrated for the 
symmetry-breaking bifurcation of a hard spring. 

INTRODUCTION 

For linear systems, it is well recognized that the operational calculus based on Laplace transfor- 
mation is a convenient and powerful technique. One would like to have a similar operational calculus for 
treating nonlinear systems. Fliess and his coworkers (ref. 1) (cf. also ref. 2) advocate the use of functional 
expansions based on noncommutative power series. One practical consequence of the approach is the use 
of Laplace-Bore1 transformation in a similar way to that of ordinary Laplace transformation. In addition 
to the advantages of the Laplace transformation, the new transformation enables treatment of the product 
operation of functions via the so-called shuffle operation or melange. 

In this paper, we shall apply Laplace-Bore1 transformation to Duffing’s equation. This simple 
system shows some rich features of nonlinear mechanics, e.g., existence of symmetric and asymmetric 
regimes, transitions into chaotic regimes via an infinite number of period doublings. 
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The main difficulty in analytic approaches is the representation of solutions. Currently, we observe 
that most researchers are using iterative procedures and harmonic balance techniques. We shall discuss the 
validity of these approaches by exploiting the symmetry properties of Duffing's equation. By applying the 
Laplace-Bore1 transformation, we shall show that the first-order approximation of the iterative solution will 
determine the nature of the solution. Given the first-order approximation, one is still faced with algebraic 
manipulation of nonlinear terms. Traditional harmonic balancing results in unwieldy calculations when we 
want to take into account the higher-order approximations. The Laplace-Bore1 transformation approach 
improves the harmonic balancing method with a more manageable algebra. We shall show that the Laplace- 
Bore1 transformation approach provides an operational calculus similar to that of the Heaviside calculus. 

Next, we shall apply this new algebraic technique to elucidate an intricate feature of the nonlin- 
ear mechanics of a hard spring, namely, a symmetry-breaking bifurcation. In this case, we shall show 
that only a second-order harmonic balahe approximation is sufficient to capture the essential features 
of a symmetry-breaking bifurcation. The bifurcation analysis based on Floquet's themy gives values of 
parameters in reasonable agmment with exact numerical results. 

ALGEBRA OF LAPLACE-BOREL TRANSFORMATION 

, 
I We shall give a brief summary of the principal rules of Laplace-Bore1 transformation and refer the 

interested reader to references 1-3 for greater detail. To each analytical functionflt) having an expansion 

there exists a corresponding generating power series G given by: 

( E O  

We have the following algebraic rules which are obtained in references 1-3: 

rt 

The Laplace-Bore1 transformation operates as if the integral is replaced by the symbolic variable xo ; while 
in the case of the Laplace transformation, the derivative is replaced by the symbolic variable s. The 
Laplace-Bore1 transformation of elementary functions is analogous to the Laplace transformation and we 

I 
I 

shall use the following relation: 
I I e'" e ( 1  - jwxo)-' ( 4) 

The Laplace-Bore1 transformation has the additional capability to handle the product of functions via the 

I f(t).g(t) - G ( n W g )  ( 5 )  

I 
I 

so-called shuffle product U 
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where CI) denotes the shuffle product operation. For instance, the shuffle product of two rational simple 
functions is: 

( 6) 

The Laplace-Bore1 transformation mats the forcing term as a symbolic variable z1 
(1 - aso)-'U ( 1  - bzo)-' = ( 1  - ( a  + b)so)-'  

where f denotes the forcing term. The product of 2 1  by 20 is noncommutative 

21.50 # 20.21 

because: 

At the end of symbolic operations, 2 1  is replaced formally by: 

21 .  =+ Q.G( f ) U  

SYMMETRY PROPERTY OF DUFFING'S EQUATION 

Duffing's equation is given as 

x + ax + w;x + px3  = fcoswt (11) 

where a > 0 and p50. Duffing's equation has an invariance property with respect to the following 
transformation: 

t = + t + -  x * - x  ( 12) 
7l 

W '  
Due to this property, a symmetric solution 2 8  is defined as: 

If a symmmetric solution is represented by a Fourier series, the series has only odd terms due to the property 
of equation (13), i.e., 

00 00 

s , ( t )  = CAz,,+1~03((2n+ 1 ) ~ t )  + C B z , , + i ~ i n ( ( 2 n +  1)wt) ( 14) 

The symmetric solution has a zero time average. By contrast, the asymmetric solution will contain even 
terms and hence may have a non-zero time average. 

-0 W O  
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ANALYTICAL REPRESENTATION OF SOLUTIONS 

Let us integrate Duffing's equation twice: 

where f( t) = fcos( wt)  and z( 0) , &( 0) are initial displacement and velocity respectively. Next, we shall 
obtain the Laplace-Bore1 transformation of this equation by means of the algebraic rules listed earlier: 

G ( z )  + azoG(z) + w ; z i G ( z )  + p z $ G ( z ) U G ( ~ ) l f G ( z )  

= 2051 + 5 0  + ( k ( 0 )  + az(0))so 

After some algebraic manipulation, we have 

where ai' and a:' are roots of the equation: 

1 + a z o + w ; z ;  = o  
Our interest lies principally in the large-time behavior of the solution. If we neglect the transient terms 
(i.e., terms that die off with large time) we have to the first order 

( 19) G(')(zo) = ( 1  - U~SO)-'SO( 1 - U ~ Z O ) - ' Z ~ G ( ~ C O S W ~ )  

or, using the algebraic rule (eq. (4)), 

G(')(zo) = ( 1 - U~ZO)-'ZO( 1 - a2so)-'zo(f/2)( 1 - jwzd- '  + ( 1  + j w z d - ' )  ( 20) 

If we define 
1 

wi - w2 + j a w  

1 
w$ - w2 - j a w  

n-1 = 

a1 = 

then after decomposition into simple rational fractions and neglecting the transient terms: 

G(')(zo) N (f/2)(R-1( 1 - jwzo)-' + f L 1 ( 1 +  jwzo) - ' )  ( 23) 
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If we insert G(')( I O )  into the shuffle product term, we get a second-order approximation. The shuffle 
product is an operation which can be done on the computer using any one of the symbolic programming 
languages available to the analyst. In this analysis, however, we shall simply use the algebraic rule (eq.(6)) 
to obtain: 

For the second-order approximation, we see that we get neither constant terms nor even terms in (fnjwt). 
This will remain true when iteration is carried out to higher order. We conclude that a solution based on 
iteration of the linear solution will be capable of representing orly the first symmetric regime. 

Next, we shall discuss the validity of the harmonic balance method. The harmonic balance method 
is based on the truncated Fourier series: 

For the first-order approximation of a symmetric solution, we have: 

When we substitute equation (26) into equation (1 1) and compute the coefficients AI,  B1 by matching the 
terms multiplied by cos( wt)  and sin( wt)  and neglecting the higher-order terms multiplied by cos( mt) 
and sin( mut) with n > 1, we obtain the solution via harmonic balance. Computation of the magnitudes of 
the neglected terms involves some algebraic manipulation that becomes unwieldy for higher-order approx- 
imations. The Laplace-Bod transformation has the merit of involving relatively easy algebraic manipu- 
lation that bears a strong analogy to the Heaviside operational calculus. Let us illustrate for the first-order 
approximation 

xu * G(zu) ( 27) 

( 28) G( 18) = A-1( 1 - ~ w s o ) - '  + A+1( 1 + ~ w s o ) - '  

where: 

If furthermore we neglect the transient terms, we have: 
Ai1 = (Ai * jBi ) /2  

+ ( 1  - a l I o ) - l I o (  1 - a2Z0)-1Z0(f/2)(( 1 - jwzo)- '  + ( 1  + jwzo)-- ' )  ( 30) 

Decomposition into simple rational fractions yields: 
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+ + 1 (31) 
3A-1A?1( 1 + jwzO)-' A?,( 1 - j3wz0) - '  + A:'( 1 + 3jwz0)-'  

( w ; - w ~ ) + ~ c Y w  ( w ; - ~ w ~ ) + ~ c Y ~ w  ( w ; - 9 w 2 ) - j a 3 w  

Here the important point is that we can identify the amplitude ratio of the component of [ lw] to that of 
[3w] through the factor B 

with algebraic manipulation similar to that of the Heaviside operational calculus. Hence, we are able to 
find the parameter range in which the component in [3w] can be neglected. 

SYMMETRY-BREAKING BIFURCATION OF A HARD SPRING 

I The idea underlying the study of symmetry-Wng bifurcation originates from the problem of 
predicting critical values of parameters at onset of chaos. The Melnikov criterion predicts onset of chaos 
in the case of a soft spring with some limited success (ref. 8); however it cannot be applied to the case of a 
hard spring. A natural alternative approach is then to predict critical values of parameters for the first few 
bifurcations, on the hypothesis that this may be sufficient to establish the trend toward the onset of chaos. 

I 

It has been found (ref. 4) that the fist-order approximation of the harmonic balance method cannot 
allow a symmetry-breaking bifurcation, while the second-order approximation may do so. Therefore, the 
validity of representing a solution by a Fourier series that is truncated at some order becomes questionable 
(ref. 4). There is no general theory that would allow us to affirm the validity of a truncated series solution. 
However, we shall show that a second-order harmonic balance representation leads to values of critical 
parameters at a symmetry-breaking bifurcation that are in reasonable agreement with numerical results 
based on a complete integration of Duffing's equation. 

I In order to visualize the symmetry-breaking bifurcation, we define the amplitude as < x2 >- 
< x >2, where <> denotes the average over a period. We draw the amplitude response curve versus 
frequency of the symmetric solution of Duffing's equation represented by 

(i) a first-order approximation 

x ! ~ )  = AlCOswt + B l ~ i W t  

(ii) the response curve of the symmetric solution represented by a second-order approximation 

x!2) = A; coswt + Bi sinwt + A; cos3 wt + B; sin3 wt ( 34) 
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and (iii) the response curve of the asymmetric solution represented by: 

xCs = A: + Aycoswt + B;simut + A~cos2wt + Bisin2 wt + A;cos3wt + B i s i d w t  ( 35) 

The principal steps in using the Laplace-Bore1 transformation are as follows. 

1. Calculate the shuffle product. 

2. Decompose into simple rational fractions. 

3. Match coefficients of terms ( 1 - jnwzo)-', where n is an integer. 

4. Solve numerically for the coefficients A,,, B,,. 

The results are given in figure 1 for the following values of parameters: a! = 0 . 2 ,  wo = 1 . O ,  
f = 10.0. 

The response curve of the symmetric solution represented by equation (32) consists of only one 
main resonance peak, while the one represented by equation (33) consists of a main resonance peak R1 
and a secondary resonance peak RJ . The response curve of the asymmetric solution represented by equa- 
tion (34) consists of only a resonance peak RZ , at a frequency range between R1 and RJ . In contrast to the 
case of a soft spring where the asymmetric solution is present for a wide range of frequency w and even 
for small values of the forcing amplitude f, the asymmetric solution for the hard spring is confined to a 
small range of w. Furthermore, it does not appear for small values of f. The difference can be viewed as 
originating from the difference in form of the potential well for the hard spring and for the soft spring. In 
the former case, the potential consists of a single symmetric well with infinite amplitude at infinite distance, 
while in the latter case, the potential well is confined to finite values. For the infinite symmetric well, the 
frequency has to be tuned to some frequency in order to break the symmetry of the motion, even at sufficient 
values off .  A complete numerical computation would include more resonance peaks; however, the main 
features at frequency w > 0.6 of figure 1 are in qualitative agreement with numerical results of reference 6. 
Using the second-order harmonic balance approximation, we study its symmetry-breaking bifurcation by 
stability analysis based on Floquet's theory. Our approach incorporates the mathematical works on Hill's 
equation (ref. 7). The results are given for comparison with numerical results from reference 4 in figure 2 
(Values of parameters: a! = O .2 ,  p = ( 2 ) 3 / 2 / 3 ) .  

We note first that we are able to reproduce one band of values of parameter f (usual approaches 
[4,5] reproduce only a lower limit value for f). Our limitation to one band of values originates from the 
second-order approximation for the symmetric solution. The values of f obtained for low values of w 
(ut < 0.9) are incorrect. This is expected because an exact solution would include more harmonics and 
the amplitude of oscillation at low w is then affected. The results obtained for f at high values of w are in 
reasonable agreement with numerical results. 
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CONCLUSIONS 

We have applied the Laplace-Bore1 transformation to discuss representation of analytical solu- 
tions of Duffing’s equation. Exploiting the symmetry property of this equation, we have demonstrated the 
following. 

1. In an iterative procedure, use of the first order iteration based on the linear equation leads only 
to a description of the first regime (symmetric solution). 

2. Implementing the harmonic balance method with the Laplace-Bore1 transformation gives an 
algebra very similar to that of the Heaviside operational calculus. 

Analysis of the nonlinear mechanics of a hard spring by means of the Laplace-Bore1 transformation 
gives values of parameters at a symmetry-breaking bifurcation in reasonable agreement with numerical re- 
sults. It should be possible to implement the Laplace-Bore1 transformation on computers as a combination 
of symbolic and numerical computation in order to predict values of parameters for the first few period- 
doubling bifurcations. 
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